Neural Network Learning: Theoretical Foundations Chapter 24 \sim 26

Martin Anthony and Peter L. Bartlett

Presenter: Yongchan Kwon Department of Statistics, Seoul National University, Seoul, Korea ykwon0407@snu.ac.kr

Definition (RP)

The class of decision problems that can be solved by a polynomial-time randomized algorithm is denoted by RP.

Definition (H-FIT)

Instance: $z \in (\mathbb{R}^n \times \{0,1\})^m$ and an integer k between 1 and m. **Question**: Is there $h \in H_n$ such that $\hat{er}_z(h) \leq k/m$? where H_n is a class of a binary function on *n*-dimensional inputs.

Theorem (23.7)

Let $H = \bigcup_n H_n$ be a graded binary function class. If there is an efficient learning algorithm for H, then there is a polynomial time randomized algorithm for H-FIT; in other words, H-FIT is in RP.

Theorem (23.8)

Suppose $RP \neq NP$ and that H is a graded class of binary functions. If H-FIT is NP-hard, then there is no efficient learning algorithm for H.

2 Ch. 25: Hardness Results for Feed-Forward Networks

3 Ch. 26: Constructive Learning Algorithms for Two-Layer Networks

Ch. 24: The Boolean Perceptron

Ch. 24

Learning is Hard for the Simple Perceptron

Definition (BP-FIT)

Instance: $z \in (\{0,1\}^n \times \{0,1\})^m$ and an integer k between 1 and m. **Question**: Is there $h \in BP_n$ such that $\hat{er}_z(h) \leq k/m$? where BP_n is the set of boolean function from $\{0,1\}^n$ to $\{0,1\}$ computed by the boolean perceptron, and $BP = \bigcup_n BP_n$.

Definition (Simple perceptron)

A simple perceptron is a function $f : \mathbf{R}^n \to \{0, 1\}$ of the form

$$f(x) = \begin{cases} 0, & \text{if } w^T x - \theta < 0 \\ 1, & \text{if } w^T x - \theta \ge 0 \end{cases}$$

for input vector $x \in \mathbf{R}^n$, $w \in \mathbf{R}^n$, and $\theta \in \mathbf{R}$.

Learning is Hard for the Simple Perceptron

Theorem (24.2)

BP-FIT is NP-hard.

Key idea: The problem is at least as hard as a well-known NP-hard problem in the field of graph theory.

Vertex cover problem [NP-hard]

A vertex cover of the graph is a set U of vertices such that for each edge (i, j) of the graph, at least one of the vertices i, j belongs to U. **Instance**: A graph G = (V, E) and an integer $k \le |V|$ **Question**: Is there a vertex cover $U \subset V$ such that $|U| \le k$?

Corollary (24.3)

If $RP \neq NP$, then there is no efficient learning algorithm for BP.

Learning is Easy for Fixed Fan-In Perceptrons

• The previous theorem shows that learning the simple perceptron is difficult. We consider simpler perceptrons in which the number of non-zero weights is constrained.

Definition (fan-in)

A simple perceptron with weights $w \in \mathbf{R}^n$ and threshold $\theta \in \mathbf{R}$ has fan-in k if the number of non-zero components of w is no more than k.

Ch. 24

Pseudocode for the Splitting procedure

```
argument: Training set, S = \{x_1, \dots, x_m\} \subset \mathbb{R}^n
                 Set of weights and thresholds, W = \{(w, \theta)\}
returns:
function Splitting(S)
    W := \emptyset
    P := \emptyset
    for all t_1 < \cdots < t_k from \{1, \dots, n\}
         for all l from \{1, ..., k+1\}
                 for all r_1 < \dots < r_l from \{1, \dots, m\}
                        for all \alpha_1, \dots, \alpha_l from \{\pm 1\}
                                if there is a solution (w, \theta) to the system
                                       of linear equations
                                       x_{\tau_i} \cdot w + \theta = \alpha_i
                                                                      i = 1,...,l
                                       satisfying
                                       \{i: w_i \neq 0\} = \{t_1, t_2, \dots, t_k\}
                                then
                                       S' := \{x \in S : w \cdot x - \theta < 0\}
                                       S'' := \{x \in S : w \cdot x - \theta \ge 0\}
                                       if \{S', S''\} \notin P
                                       then
                                                W := W \cup \{(w, \theta)\}
                                                P := P \cup \{\hat{S}', \hat{S}''\}
                                       endif
                                endif
                        endfor
                 endfor
         endfor
    endfor
    return W
end
```

Learning is Easy for Fixed Fan-In Perceptrons

Theorem (24.4)

The procedure **Splitting** returns all dichotomies of its arguments $S \subset \mathbb{R}^n$ that can be computed by some simple perceptron with fan-in no more than k. For |S| = m, it takes time $O(n^{2k}2^km^{2k+3})$

Corollary (24.5)

For fixed k, define the graded class $H^k = \bigcup_n H_n^k$, where H_n^k is the class of simple perceptrons defined on \mathbb{R}^n with fan-in no more than k. The class H^k is efficiently learnable.

Ch. 25: Hardness Results for Feed-Forward Networks

Ch. 25

Linear Threshold Networks with Binary Inputs

Linear Threshold Networks with Binary Inputs

- Let N^k_{∧,n} be a neural network on n binary inputs and k + 1 linear threshold units. Further, we only consider N^k_{∧,n} has two layers of computation units, the first consisting of k linear threshold units.
- The output unit is also a linear threshold unit, with a connection of fixed weight 1 from each of the other k threshold units.
- Consider the graded space $N^k_{\wedge} = \cup_n N^k_{\wedge,n}$.

$N^k_{\wedge} - CONSISTENCY$

Instance: $z \in (\{0,1\}^n \times \{0,1\})^m$ **Question**: Is there $h \in N^k_{\wedge,n}$ such that $\hat{er}_z(h) = 0$?

Linear Threshold Networks with Binary Inputs

Corollary (25.2)

Let $k \leq 3$ be any fixed integer. Then, N^k_{\wedge} – CONSISTENCY is NP-hard.

Key idea: Again, the problem is at least as hard as a well-known NP-hard problem in the field of graph theory.

k - colouring [NP-hard]

A k – colouring of G is a function $\chi : V \to \{1, 2, ..., k\}$ with the property that whenever $(i, j) \in E$, then $\chi(i) \neq \chi(j)$. **Instance**: A graph G**Question**: Does G have a k – colouring?

Corollary (25.3)

Unless RP = NP, there is no efficient learning algorithm for the graded class $H = \bigcup_n H_n$, where H_n is the set of functions computable by $N_{\wedge,n}^k$.

Linear Threshold Networks with Real Inputs

• The result of the previous section is limited, since it shows that learning is difficult for a rather unusual network class. But....

Theorem (25.4)

Unless RP = NP, there is no efficient learning algorithm for the graded class $H = \bigcup_n H_n$, where H_n is the set of functions computable by N_n^k , a network with n real inputs.

• Similar results are obtained for sigmoid networks. (chapter 25.4).

Ch. 26: Constructive Learning Algorithms for Two-Layer Networks

Real Estimation with Convex Combinations of Basis Functions

- We consider learning algorithms for classes *F* of real valued functions that can be expressed as convex combinations of functions from some class *G* of basis functions.
- Some boosting and neural networks classes are example of *F* under some constraints

Real Estimation with Convex Combinations of Basis Functions

Theorem (26.1)

Let V be a vector space with an inner product, and let $||f|| = \sqrt{(f, f)}$ be the induced norm on V. Suppose that $G \subset V$ and that, for some B > 0, $||g|| \le B$ for all $g \in G$. Fix $f \in V$, $k \in \mathbb{N}$, and $c \ge B^2$, and define $\hat{f}_0 = 0$. Then for i = 1, ..., k, choose $g_i \in G$ such that

$$\|f - \hat{f}_i\|^2 \le \inf_{g \in G} \|f - ((1 - \alpha_i)\hat{f}_{i-1} + \alpha_i g)\|^2 + e_i$$

where $\alpha_i = 2/(i+1)$, $e_i \le 4(c-B^2)/(i+1)^2$, and $\hat{f}_i = (1-\alpha_i)\hat{f}_{i-1} + \alpha_i g$. Then,

$$\|f - \hat{f}_k\|^2 < \inf_{\hat{f} \in co(G)} \|f - \hat{f}\|^2 + \frac{4c}{k}.$$

Real Estimation with Convex Combinations of Basis Functions

Note that $||f - ((1 - \alpha_i)\hat{f}_{i-1} + \alpha_i g)||^2 = \alpha_i^2 ||\tilde{f} - g||^2$, where $\tilde{f} = (f - (1 - \alpha_i)\hat{f}_{i-1})/\alpha_i$. This suggests using an approximate-SEM algorithm for a class *G* to approximately minimize sample error over the class co(G).

Corollary (26.2)

Suppose that $G = \bigcup_n G_n$ is a graded class of real-valued functions that map to some bounded interval, and L is an efficient approximate-SEM algorithm for G, with running time O(p(m, n, 1/e)) for some polynomial p. Then, the algorithm Construct_L can be used as the basis of an efficient approximate-SEM algorithm for $co(G) = \bigcup_n co(G_n)$, and this algorithm has running time O(p(m, n, 1/e)/e).

Pseudocode for the Construct procedure

```
arguments: Training set, S = \{(x_1, y_1), \dots, (x_m, y_m)\} \subset (X \times \mathbb{R})^m
Number of iterations, k
Bound, B, on range of functions in G
returns: Convex combination of functions from G, \hat{f}_k = \sum_{i=1}^k \gamma_k g_k
```

```
function Construct<sub>L</sub> (S, k, B)

\hat{f}_0 := 0

for i := 1 to k

\alpha_i := 2/(i + 1)

for j := 1 to m

\tilde{y}_j = (1/\alpha_i) \left( y_j - (1 - \alpha_i) \hat{f}_{i-1}(x_j) \right)

end for

\tilde{S} = \{(x_1, \tilde{y}_1), \dots, (x_m, \tilde{y}_m)\}

g_i := L(\tilde{S}, B^2)

\hat{f}_i := (1 - \alpha_i) \hat{f}_{i-1} + \alpha_i g_i

endfor

return \hat{f}_k

end
```

Fig. 26.1. Pseudocode for the Construct_L algorithm. (L is an approximate-SEM algorithm for $G \subset [-B, B]^{\chi}$.)

Real Estimation with Convex Combinations of Basis Functions

Let $G = BH \cup -BH$, with $H = \{sgn(w^Tx + w_0) : w \in \mathbb{R}^n, w_o \in \mathbb{R}\}$, and $BH = \{B \times h : h \in H\}$. Then, F = co(G) is the class of two-layer networks with linear threshold units in the first layer and a linear output unit.

Theorem (26.6)

Let H_n^k be the set of k fan-in linear threshold functions, and let $F_n^k = co(BH_n^k \cup -BH_n^k)$. Then, the algorithm Construct, based on the algorithm Splitting, is an efficient learning algorithm for the graded class $F^k = \bigcup_n F_n^k$.