Neural Network Learning: Theoretical Foundations Chapter 24 ~ 26

Martin Anthony and Peter L. Bartlett

Presenter: Yongchan Kwon
Department of Statistics, Seoul National University, Seoul, Korea ykwon0407@snu.ac.kr

Reviews; pp.312-313

Definition (RP)

The class of decision problems that can be solved by a polynomial-time randomized algorithm is denoted by RP.

Definition (H-FIT)

Instance: $z \in\left(\mathbf{R}^{n} \times\{0,1\}\right)^{m}$ and an integer k between 1 and m. Question: Is there $h \in H_{n}$ such that $\hat{e r}_{z}(h) \leq k / m$? where H_{n} is a class of a binary function on n-dimensional inputs.

Reviews; pp.312-313

Theorem (23.7)

Let $H=\cup_{n} H_{n}$ be a graded binary function class. If there is an efficient learning algorithm for H, then there is a polynomial time randomized algorithm for H-FIT; in other words, H-FIT is in RP.

Theorem (23.8)
Suppose $R P \neq N P$ and that H is a graded class of binary functions. If H-FIT is NP-hard, then there is no efficient learning algorithm for H .

Contents

(1) Ch. 24: The Boolean Perceptron
(2) Ch. 25: Hardness Results for Feed-Forward Networks
(3) Ch. 26: Constructive Learning Algorithms for Two-Layer Networks

Ch. 24: The Boolean Perceptron

Learning is Hard for the Simple Perceptron

Definition (BP-FIT)

Instance: $z \in\left(\{0,1\}^{n} \times\{0,1\}\right)^{m}$ and an integer k between 1 and m.
Question: Is there $h \in B P_{n}$ such that $\hat{e r}_{z}(h) \leq k / m$?
where $B P_{n}$ is the set of boolean function from $\{0,1\}^{n}$ to $\{0,1\}$ computed by the boolean perceptron, and $B P=\cup_{n} B P_{n}$.

Definition (Simple perceptron)

A simple perceptron is a function $f: \mathbf{R}^{n} \rightarrow\{0,1\}$ of the form

$$
f(x)= \begin{cases}0, & \text { if } w^{\top} x-\theta<0 \\ 1, & \text { if } w^{\top} x-\theta \geq 0\end{cases}
$$

for input vector $x \in \mathbf{R}^{n}, w \in \mathbf{R}^{n}$, and $\theta \in \mathbf{R}$.

Learning is Hard for the Simple Perceptron

Theorem (24.2)
BP-FIT is NP-hard.
Key idea: The problem is at least as hard as a well-known NP-hard problem in the field of graph theory.

Vertex cover problem [NP-hard]

A vertex cover of the graph is a set U of vertices such that for each edge (i, j) of the graph, at least one of the vertices i, j belongs to U.
Instance: A graph $G=(V, E)$ and an integer $k \leq|V|$ Question: Is there a vertex cover $U \subset V$ such that $|U| \leq k$?

Corollary (24.3)
If $R P \neq N P$, then there is no efficient learning algorithm for $B P$.

Learning is Easy for Fixed Fan-In Perceptrons

- The previous theorem shows that learning the simple perceptron is difficult. We consider simpler perceptrons in which the number of non-zero weights is constrained.

Definition (fan-in)

A simple perceptron with weights $w \in \mathbf{R}^{n}$ and threshold $\theta \in \mathbf{R}$ has fan-in k if the number of non-zero components of w is no more than k.

Pseudocode for the Splitting procedure

```
argument: Training set, \(S=\left\{x_{1}, \ldots, x_{\mathrm{m}}\right\} \subset \mathrm{R}^{n}\)
returns: Set of weights and thresholds, \(W=\{(w, \theta)\}\)
function Splitting \((S)\)
    \(W:=\emptyset\)
    \(P:=0\)
    for all \(t_{1}<\cdots<t_{k}\) from \(\{1, \ldots, n\}\)
        for all \(l\) from \(\{1, \ldots, k+1\}\)
            for all \(r_{1}<\cdots<r_{l}\) from \(\{1, \ldots, m\}\)
            for all \(\alpha_{1}, \cdots, \alpha_{i}\) from \(\{ \pm 1\}\)
                                if there is a solution ( \(w, \theta\) ) to the system
                        of linear equations
                        \(x_{r_{i}} \cdot w+\theta=\alpha_{i} \quad i=1, \ldots, l\)
                        satisfying
                                \(\left\{i: w_{i} \neq 0\right\}=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}\)
                                then
                                    \(S^{\prime}:=\{x \in S ; w \cdot x-\theta<0\}\)
                            \(S^{\prime \prime}:=\{x \in S: w \cdot x-\theta \geq 0\}\)
                            if \(\left\{S^{\prime}, S^{\prime \prime}\right\} \notin P\)
                            then
                                    \(W:=W \cup\{(w, \theta)\}\)
                                    \(P:=P \cup\left\{S^{\prime \prime}, S^{\prime \prime}\right\}\)
                            endif
                        endif
                    endfor
            endfor
        endfor
    endfor
    return \(W\)
end
```


Learning is Easy for Fixed Fan-In Perceptrons

Theorem (24.4)
The procedure Splitting returns all dichotomies of its arguments $S \subset \mathbf{R}^{n}$ that can be computed by some simple perceptron with fan-in no more than k. For $|S|=m$, it takes time $O\left(n^{2 k} 2^{k} m^{2 k+3}\right)$

Corollary (24.5)

For fixed k, define the graded class $H^{k}=\cup_{n} H_{n}^{k}$, where H_{n}^{k} is the class of simple perceptrons defined on \mathbf{R}^{n} with fan-in no more than k. The class H^{k} is efficiently learnable.

Ch. 25: Hardness Results for Feed-Forward Networks

Linear Threshold Networks with Binary Inputs

Linear Threshold Networks with Binary Inputs

- Let $N_{\wedge, n}^{k}$ be a neural network on n binary inputs and $k+1$ linear threshold units. Further, we only consider $N_{\wedge, n}^{k}$ has two layers of computation units, the first consisting of k linear threshold units.
- The output unit is also a linear threshold unit, with a connection of fixed weight 1 from each of the other k threshold units.
- Consider the graded space $N_{\wedge}^{k}=\cup_{n} N_{\wedge, n}^{k}$.
$N_{\wedge}^{k}-$ CONSISTENCY
Instance: $z \in\left(\{0,1\}^{n} \times\{0,1\}\right)^{m}$
Question: Is there $h \in N_{\wedge, n}^{k}$ such that $\hat{e} r_{z}(h)=0$?

Linear Threshold Networks with Binary Inputs

Corollary (25.2)

Let $k \leq 3$ be any fixed integer. Then, $N_{\wedge}^{k}-$ CONSISTENCY is NP-hard.
Key idea: Again, the problem is at least as hard as a well-known NP-hard problem in the field of graph theory.

k - colouring [NP-hard]

A k - colouring of G is a function $\chi: V \rightarrow\{1,2, \ldots, k\}$ with the property that whenever $(i, j) \in E$, then $\chi(i) \neq \chi(j)$.
Instance: A graph G
Question: Does G have a k - colouring?
Corollary (25.3)
Unless $R P=N P$, there is no efficient learning algorithm for the graded class $H=\cup_{n} H_{n}$, where H_{n} is the set of functions computable by $N_{\wedge, n}^{k}$.

Linear Threshold Networks with Real Inputs

- The result of the previous section is limited, since it shows that learning is difficult for a rather unusual network class. But....

Theorem (25.4)

Unless $R P=N P$, there is no efficient learning algorithm for the graded class $H=\cup_{n} H_{n}$, where H_{n} is the set of functions computable by N_{n}^{k}, a network with n real inputs.

- Similar results are obtained for sigmoid networks. (chapter 25.4).

Ch. 26: Constructive Learning Algorithms for Two-Layer Networks

Real Estimation with Convex Combinations of Basis Functions

- We consider learning algorithms for classes F of real valued functions that can be expressed as convex combinations of functions from some class G of basis functions.
- Some boosting and neural networks classes are example of F under some constraints

Real Estimation with Convex Combinations of Basis Functions

Theorem (26.1)

Let V be a vector space with an inner product, and let $\|f\|=\sqrt{(f, f)}$ be the induced norm on V. Suppose that $G \subset V$ and that, for some $B>0$, $\|g\| \leq B$ for all $g \in G$. Fix $f \in V, k \in \mathbf{N}$, and $c \geq B^{2}$, and define $\hat{f}_{0}=0$. Then for $i=1, \ldots, k$, choose $g_{i} \in G$ such that

$$
\left\|f-\hat{f}_{i}\right\|^{2} \leq \inf _{g \in G}\left\|f-\left(\left(1-\alpha_{i}\right) \hat{f}_{i-1}+\alpha_{i} g\right)\right\|^{2}+e_{i}
$$

where $\alpha_{i}=2 /(i+1), e_{i} \leq 4\left(c-B^{2}\right) /(i+1)^{2}$, and
$\hat{f}_{i}=\left(1-\alpha_{i}\right) \hat{f}_{i-1}+\alpha_{i} g$. Then,

$$
\left\|f-\hat{f}_{k}\right\|^{2}<\inf _{\hat{f} \in c o(G)}\|f-\hat{f}\|^{2}+\frac{4 c}{k} .
$$

Real Estimation with Convex Combinations of Basis

 FunctionsNote that $\left\|f-\left(\left(1-\alpha_{i}\right) \hat{f}_{i-1}+\alpha_{i} g\right)\right\|^{2}=\alpha_{i}^{2}\|\tilde{f}-g\|^{2}$, where $\tilde{f}=\left(f-\left(1-\alpha_{i}\right) \hat{f}_{i-1}\right) / \alpha_{i}$. This suggests using an approximate-SEM algorithm for a class G to approximately minimize sample error over the class $c o(G)$.

Corollary (26.2)

Suppose that $G=\cup_{n} G_{n}$ is a graded class of real-valued functions that map to some bounded interval, and L is an efficient approximate-SEM algorithm for G, with running time $O(p(m, n, 1 / e))$ for some polynomial p. Then, the algorithm Construct L_{L} can be used as the basis of an efficient approximate-SEM algorithm for $\operatorname{co}(G)=\cup_{n} \operatorname{co}\left(G_{n}\right)$, and this algorithm has running time $O(p(m, n, 1 / e) / e)$.

Pseudocode for the Construct procedure

```
arguments: Training set, \(S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\} \subset(X \times \mathbb{R})^{m}\)
    Number of iterations, \(k\)
    Bound, \(B\), on range of functions in \(G\)
returns: Convex combination of functions from \(G, \hat{f}_{k}=\sum_{i=1}^{k} \gamma_{k} g_{k}\)
function Construct \({ }_{L}(S, k, B)\)
    \(\hat{f}_{0}:=0\)
    for \(i:=1\) to \(k\)
        \(\alpha_{i}:=2 /(i+1)\)
        for \(j:=1\) to \(m\)
            \(\tilde{y}_{j}=\left(1 / \alpha_{i}\right)\left(y_{j}-\left(1-\alpha_{i}\right) \hat{f}_{i-1}\left(x_{j}\right)\right)\)
        end for
        \(\tilde{S}=\left\{\left(x_{1}, \tilde{y}_{1}\right), \ldots,\left(x_{m}, \tilde{y}_{m}\right)\right\}\)
        \(g_{i}:=L\left(\tilde{S}, B^{2}\right)\)
        \(\hat{f}_{i}:=\left(1-\alpha_{i}\right) \hat{f}_{i-1}+\alpha_{i} g_{i}\)
    endfor
    return \(\hat{f}_{k}\)
end
```

Fig. 26.1. Pseudocode for the Construct ${ }_{L}$ algorithm. (L is an approximateSEM algorithm for $G \subset[-B, B]^{X}$.)

Real Estimation with Convex Combinations of Basis Functions

Let $G=B H \cup-B H$, with $H=\left\{\operatorname{sgn}\left(w^{T} x+w_{0}\right): w \in \mathbf{R}^{n}, w_{o} \in \mathbf{R}\right\}$, and $B H=\{B \times h: h \in H\}$. Then, $F=c o(G)$ is the class of two-layer networks with linear threshold units in the first layer and a linear output unit.

Theorem (26.6)

Let H_{n}^{k} be the set of k fan-in linear threshold functions, and let $F_{n}^{k}=\operatorname{co}\left(B H_{n}^{k} \cup-B H_{n}^{k}\right)$. Then, the algorithm Construct, based on the algorithm Splitting, is an efficient learning algorithm for the graded class $F^{k}=\cup_{n} F_{n}^{k}$.

