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Definition (RP)
The class of decision problems that can be solved by a polynomial-time
randomized algorithm is denoted by RP.

Definition (H-FIT)
Instance: z € (R” x {0,1})™ and an integer k between 1 and m.

Question: Is there h € H, such that ér,(h) < k/m?
where H,, is a class of a binary function on n-dimensional inputs.
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Theorem (23.7)

Let H = U,H, be a graded binary function class. If there is an efficient
learning algorithm for H, then there is a polynomial time randomized
algorithm for H-FIT, in other words, H-FIT is in RP.

Theorem (23.8)

Suppose RP # NP and that H is a graded class of binary functions. If
H-FIT is NP-hard, then there is no efficient learning algorithm for H.
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Ch. 24: The Boolean Perceptron
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Learning is Hard for the Simple Perceptron

Definition (BP-FIT)

Instance: z € ({0,1}"” x {0,1})™ and an integer k between 1 and m.
Question: Is there h € BP, such that ér,(h) < k/m?

where BP,, is the set of boolean function from {0,1}"” to {0,1} computed
by the boolean perceptron, and BP = U,BP,.

Definition (Simple perceptron)
A simple perceptron is a function f : R” — {0, 1} of the form

0, ifw/'x—60<0
1, fwix—60>0

) = {

for input vector x € R", w € R”, and 8 € R.

)
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Ch. 24

Learning is Hard for the Simple Perceptron

Theorem (24.2)
BP-FIT is NP-hard. J

Key idea: The problem is at least as hard as a well-known NP-hard
problem in the field of graph theory.
Vertex cover problem [NP-hard]

A vertex cover of the graph is a set U of vertices such that for each edge
(7,j) of the graph, at least one of the vertices /, j belongs to U.
Instance: A graph G = (V, E) and an integer k < |V/|

Question: Is there a vertex cover U C V such that |U| < k?

Corollary (24.3)
If RP £ NP, then there is no efficient learning algorithm for BP.
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Learning is Easy for Fixed Fan-In Perceptrons

@ The previous theorem shows that learning the simple perceptron is
difficult. We consider simpler perceptrons in which the number of

non-zero weights is constrained.
Definition (fan-in)

A simple perceptron with weights w € R” and threshold 6 € R has fan-in
k if the number of non-zero components of w is no more than k.
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Ch. 24

Pseudocode for the Splitting procedure

argument: Training set, 5= {z1,...,2m} CR"
returns: Set of weights amd thresholds, W = {{w,#}}

function Splitting(5)
W=0

P=0
for all t; < - < tp fzom {1,...,n}
for all [ from {1,....k+1}
for all y <. - <5y froem {1,...,m}
for all oy, -- 0 from {1}
if there is & sclution (w,f) to the systam

of limu‘ equations
T A o=y im0,

satisfyl

{i:m#nf {tta,. . ta}
then

§i={reS:iw-z—-8 <0}

&= € §:w-z-020}

if {8, 8"} g P
then
W= WU {{w, &)}
P=Pu{s 5"}
endif
endif
endfor
endfor
endfor
endfor
return W

end
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Learning is Easy for Fixed Fan-In Perceptrons

Theorem (24.4)

The procedure Splitting returns all dichotomies of its arguments S C R"
that can be computed by some simple perceptron with fan-in no more
than k. For |S| = m, it takes time O(n?2km?2k+3)

Corollary (24.5)

For fixed k, define the graded class Hk = U,,H,’,‘, where H,’,‘ is the class of
simple perceptrons defined on R" with fan-in no more than k. The class
H* is efficiently learnable.
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Ch. 25: Hardness Results for Feed-Forward Networks J
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Ch. 25

Linear Threshold Networks with Binary Inputs

1 guiput unit
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Ch. 25

Linear Threshold Networks with Binary Inputs

o Let Nkm be a neural network on n binary inputs and k + 1 linear
threshold units. Further, we only consider N}{},1 has two layers of
computation units, the first consisting of k linear threshold units.

@ The output unit is also a linear threshold unit, with a connection of
fixed weight 1 from each of the other k threshold units.

o Consider the graded space Nf = U,NX .

NX — CONSISTENCY

Instance: z € ({0,1}" x {0,1})™
Question: Is there h € NK,,, such that ér,(h) = 07
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Linear Threshold Networks with Binary Inputs

Corollary (25.2)
Let k < 3 be any fixed integer. Then, N — CONSISTENCY is NP-hard.

Key idea: Again, the problem is at least as hard as a well-known NP-hard
problem in the field of graph theory.

k — colouring [NP-hard]

A k — colouring of G is a function x : V — {1,2,..., k} with the property
that whenever (i,j) € E, then x(i) # x(j).

Instance: A graph G

Question: Does G have a k — colouring?

Corollary (25.3)

Unless RP = NP, there is no efficient learning algorithm for the graded
class H = U,H,, where Hy, is the set of functions computable by Nf{yn.
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Ch. 25

Linear Threshold Networks with Real Inputs

@ The result of the previous section is limited, since it shows that
learning is difficult for a rather unusual network class. But....

Theorem (25.4)

Unless RP = NP, there is no efficient learning algorithm for the graded
class H = U,H,, where H, is the set of functions computable by N,’,‘, a
network with n real inputs.

@ Similar results are obtained for sigmoid networks. (chapter 25.4).
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Ch. 26: Constructive Learning Algorithms for
Two-Layer Networks
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Ch. 26 Real Estimation with Convex Combinations of Basis Functions

Real Estimation with Convex Combinations of Basis
Functions

@ We consider learning algorithms for classes F of real valued functions

that can be expressed as convex combinations of functions from some
class G of basis functions.

@ Some boosting and neural networks classes are example of F under
some constraints
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Ch. 26 Real Estimation with Convex Combinations of Basis Functions

Real Estimation with Convex Combinations of Basis
Functions

Theorem (26.1)

Let V be a vector space with an inner product, and let ||f|| = \/(f,f) be
the induced norm on V. Suppose that G C V and that, for some B > 0,
lgll < B forallg e G. Fixf e V,keN, and c > B, and define fy = 0.
Then fori =1,...,k, choose gi € G such that

If = Fl1> < inf [If — (1 — a)fi1 + ig) > + &,
geiG

where a; = 2/(i + 1), e; < 4(c — B2)/(i + 1)2, and
fi=(1— «aj)fi_1 + ajg. Then,

~ ~ 4c
If —h|? < inf ||f —F]2 4+ —.
€co(G) k
e o
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Ch. 26 Real Estimation with Convex Combinations of Basis Functions

Real Estimation with Convex Combinations of Basis
Functions

Note that ||f — ((1 — a;)fii1 + cg)||? = o?||f — g||?, where

f = (f — (1 — aj)fi_1)/c;. This suggests using an approximate-SEM
algorithm for a class G to approximately minimize sample error over the
class co(G).

Corollary (26.2)

Suppose that G = U, G, is a graded class of real-valued functions that
map to some bounded interval, and L is an efficient approximate-SEM
algorithm for G, with running time O(p(m, n,1/e)) for some polynomial
p. Then, the algorithm Construct; can be used as the basis of an efficient
approximate-SEM algorithm for co(G) = U,co(Gy), and this algorithm
has running time O(p(m, n,1/e)/e).
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Ch. 26 Real Estimation with Convex Combinations of Basis Functions

Pseudocode for the Construct procedure

arguments: Training set, S = {(z1,41),...,(Zm,pym)} C (X xR)™
Kumber of iteratioms, k
Bound, B, on range of functions in G

returns: Convex combination of functions from G, fi = E:":l"ngh

fumztion Construct (S, k, B)

fo:=0
for i:=1 to k
ai=2[(i+1)

for j:==1tom
3 = (t/es) (35 = (1 = @) fim ()
end for
S = {(31_! ﬁ1)1 weey (3m,ﬁm)}
g = L(3, BY)
fi =(1- Oti)fi-) + a;gi
endfor

return f;
end

Fig. 26.1. Pseudocode for the Constructy algorithm. (L is an approximate-
SEM algorithm for G C [-B, B]X.)

IDEA book seminar Yongchan Kwon 20 /21



Ch. 26 Real Estimation with Convex Combinations of Basis Functions

Real Estimation with Convex Combinations of Basis
Functions

Let G = BHU —BH, with H = {sgn(w"x + wp) : w € R", w,, € R}, and
BH = {Bxh:he H}. Then, F = co(G) is the class of two-layer networks
with linear threshold units in the first layer and a linear output unit.

Theorem (26.6)

Let HX be the set of k fan-in linear threshold functions, and let
Fk = co(BHX U —BHX). Then, the algorithm Construct, based on the

algorithm Splitting, is an efficient learning algorithm for the graded class
Fk = U,FE.
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