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Reviews; pp.312-313

Definition (RP)

The class of decision problems that can be solved by a polynomial-time
randomized algorithm is denoted by RP.

Definition (H-FIT)

Instance: z ∈ (Rn × {0, 1})m and an integer k between 1 and m.
Question: Is there h ∈ Hn such that êr z(h) ≤ k/m?
where Hn is a class of a binary function on n-dimensional inputs.
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Reviews; pp.312-313

Theorem (23.7)

Let H = ∪nHn be a graded binary function class. If there is an efficient
learning algorithm for H, then there is a polynomial time randomized
algorithm for H-FIT; in other words, H-FIT is in RP.

Theorem (23.8)

Suppose RP 6= NP and that H is a graded class of binary functions. If
H-FIT is NP-hard, then there is no efficient learning algorithm for H.
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Ch. 24

Ch. 24: The Boolean Perceptron
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Ch. 24

Learning is Hard for the Simple Perceptron

Definition (BP-FIT)

Instance: z ∈ ({0, 1}n × {0, 1})m and an integer k between 1 and m.
Question: Is there h ∈ BPn such that êr z(h) ≤ k/m?
where BPn is the set of boolean function from {0, 1}n to {0, 1} computed
by the boolean perceptron, and BP = ∪nBPn.

Definition (Simple perceptron)

A simple perceptron is a function f : Rn → {0, 1} of the form

f (x) =
{ 0, if wT x − θ < 0

1, if wT x − θ ≥ 0

for input vector x ∈ Rn, w ∈ Rn, and θ ∈ R.
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Ch. 24

Learning is Hard for the Simple Perceptron

Theorem (24.2)

BP-FIT is NP-hard.

Key idea: The problem is at least as hard as a well-known NP-hard
problem in the field of graph theory.

Vertex cover problem [NP-hard]

A vertex cover of the graph is a set U of vertices such that for each edge
(i , j) of the graph, at least one of the vertices i , j belongs to U.
Instance: A graph G = (V ,E ) and an integer k ≤ |V |
Question: Is there a vertex cover U ⊂ V such that |U| ≤ k?

Corollary (24.3)

If RP 6= NP, then there is no efficient learning algorithm for BP.
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Ch. 24

Learning is Easy for Fixed Fan-In Perceptrons

The previous theorem shows that learning the simple perceptron is
difficult. We consider simpler perceptrons in which the number of
non-zero weights is constrained.

Definition (fan-in)

A simple perceptron with weights w ∈ Rn and threshold θ ∈ R has fan-in
k if the number of non-zero components of w is no more than k .
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Ch. 24

Pseudocode for the Splitting procedure
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Ch. 24

Learning is Easy for Fixed Fan-In Perceptrons

Theorem (24.4)

The procedure Splitting returns all dichotomies of its arguments S ⊂ Rn

that can be computed by some simple perceptron with fan-in no more
than k. For |S | = m, it takes time O(n2k2km2k+3)

Corollary (24.5)

For fixed k , define the graded class Hk = ∪nHk
n , where Hk

n is the class of
simple perceptrons defined on Rn with fan-in no more than k. The class
Hk is efficiently learnable.
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Ch. 25

Ch. 25: Hardness Results for Feed-Forward Networks
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Ch. 25

Linear Threshold Networks with Binary Inputs
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Ch. 25

Linear Threshold Networks with Binary Inputs

Let Nk
∧,n be a neural network on n binary inputs and k + 1 linear

threshold units. Further, we only consider Nk
∧,n has two layers of

computation units, the first consisting of k linear threshold units.

The output unit is also a linear threshold unit, with a connection of
fixed weight 1 from each of the other k threshold units.

Consider the graded space Nk
∧ = ∪nNk

∧,n.

Nk
∧ − CONSISTENCY

Instance: z ∈ ({0, 1}n × {0, 1})m
Question: Is there h ∈ Nk

∧,n such that êr z(h) = 0?
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Ch. 25

Linear Threshold Networks with Binary Inputs

Corollary (25.2)

Let k ≤ 3 be any fixed integer. Then, Nk
∧ − CONSISTENCY is NP-hard.

Key idea: Again, the problem is at least as hard as a well-known NP-hard
problem in the field of graph theory.

k − colouring [NP-hard]

A k − colouring of G is a function χ : V → {1, 2, ..., k} with the property
that whenever (i , j) ∈ E , then χ(i) 6= χ(j).
Instance: A graph G
Question: Does G have a k − colouring?

Corollary (25.3)

Unless RP = NP, there is no efficient learning algorithm for the graded
class H = ∪nHn, where Hn is the set of functions computable by Nk

∧,n.
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Ch. 25

Linear Threshold Networks with Real Inputs

The result of the previous section is limited, since it shows that
learning is difficult for a rather unusual network class. But....

Theorem (25.4)

Unless RP = NP, there is no efficient learning algorithm for the graded
class H = ∪nHn, where Hn is the set of functions computable by Nk

n , a
network with n real inputs.

Similar results are obtained for sigmoid networks. (chapter 25.4).
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Ch. 26

Ch. 26: Constructive Learning Algorithms for
Two-Layer Networks
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Ch. 26 Real Estimation with Convex Combinations of Basis Functions

Real Estimation with Convex Combinations of Basis
Functions

We consider learning algorithms for classes F of real valued functions
that can be expressed as convex combinations of functions from some
class G of basis functions.

Some boosting and neural networks classes are example of F under
some constraints
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Ch. 26 Real Estimation with Convex Combinations of Basis Functions

Real Estimation with Convex Combinations of Basis
Functions

Theorem (26.1)

Let V be a vector space with an inner product, and let ‖f ‖ =
√

(f , f ) be
the induced norm on V . Suppose that G ⊂ V and that, for some B > 0,
‖g‖ ≤ B for all g ∈ G . Fix f ∈ V , k ∈ N, and c ≥ B2, and define f̂0 = 0.
Then for i = 1, . . . , k, choose gi ∈ G such that

‖f − f̂i‖2 ≤ inf
g∈G
‖f − ((1− αi )f̂i−1 + αig)‖2 + ei ,

where αi = 2/(i + 1), ei ≤ 4(c − B2)/(i + 1)2, and
f̂i = (1− αi )f̂i−1 + αig . Then,

‖f − f̂k‖2 < inf
f̂ ∈co(G)

‖f − f̂ ‖2 +
4c

k
.
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Ch. 26 Real Estimation with Convex Combinations of Basis Functions

Real Estimation with Convex Combinations of Basis
Functions

Note that ‖f − ((1− αi )f̂i−1 + αig)‖2 = α2
i ‖f̃ − g‖2, where

f̃ = (f − (1− αi )f̂i−1)/αi . This suggests using an approximate-SEM
algorithm for a class G to approximately minimize sample error over the
class co(G ).

Corollary (26.2)

Suppose that G = ∪nGn is a graded class of real-valued functions that
map to some bounded interval, and L is an efficient approximate-SEM
algorithm for G , with running time O(p(m, n, 1/e)) for some polynomial
p. Then, the algorithm ConstructL can be used as the basis of an efficient
approximate-SEM algorithm for co(G ) = ∪nco(Gn), and this algorithm
has running time O(p(m, n, 1/e)/e).
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Ch. 26 Real Estimation with Convex Combinations of Basis Functions

Pseudocode for the Construct procedure
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Ch. 26 Real Estimation with Convex Combinations of Basis Functions

Real Estimation with Convex Combinations of Basis
Functions

Let G = BH ∪ −BH, with H = {sgn(wT x + w0) : w ∈ Rn,wo ∈ R}, and
BH = {B×h : h ∈ H}. Then, F = co(G ) is the class of two-layer networks
with linear threshold units in the first layer and a linear output unit.

Theorem (26.6)

Let Hk
n be the set of k fan-in linear threshold functions, and let

F k
n = co(BHk

n ∪ −BHk
n ). Then, the algorithm Construct, based on the

algorithm Splitting, is an efficient learning algorithm for the graded class
F k = ∪nF k

n .
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